

Aembit Server
Workload Cookbook:
GitLab Edition
How to Securely Configure Workload Access
to the GitLab REST API

GitLab has become a central platform for software delivery across industries. As of

2025, it supports more than 50 million registered users globally, with over half of the

Fortune 100 relying on GitLab to automate development, operations, and security

workflows.

GitLab‘s growth reflects both the ubiquity of CI/CD adoption – and the increasing

complexity of managing authentication between automated systems, applications, and

external services securely and at scale.

The GitLab REST API sits at the center of these interactions, which provides

programmatic access to GitLab’s key functionality – including repository management,

merge requests, and issue tracking. Workloads, such as applications, AI agents, and

services, frequently interact with the REST API as part of broader delivery and

orchestration pipelines. These workloads require authentication to perform essential

tasks within automated environments.

However, the prevailing methods for managing this access introduce unnecessary

operational and security challenges. It is common for organizations to store static

personal access tokens or application secrets as environment variables or configuration

files, making them difficult to rotate, audit, and protect with fine-grained access

controls – and exposing organizations to risk when mishandled.

The consequences of such practices have become apparent in recent breaches. The

2025 Verizon Data Breach Investigations Report found that stolen credentials remain

the most frequent initial attack vector, contributing to roughly a quarter of breaches.

Specific to the DevOps environment, the breach of Pearson plc in January 2025 began

with a leaked GitLab token, leading to the exfiltration of terabytes of sensitive data.

These incidents illustrate how a single mismanaged credential can escalate into

large-scale compromise.

2 aembit.io

https://ir.gitlab.com/news/news-details/2025/GitLab-Reports-Fourth-Quarter-and-Full-Fiscal-Year-2025-Financial-Results/default.aspx
https://gitlab.com/
https://aembit.io/blog/credential-and-secrets-theft-insights-from-the-2024-verizon-data-breach-report/
https://www.bleepingcomputer.com/news/security/education-giant-pearson-hit-by-cyberattack-exposing-customer-data/
https://www.bleepingcomputer.com/news/security/education-giant-pearson-hit-by-cyberattack-exposing-customer-data/

In response to these realities, this edition of the Aembit Server Workload Cookbook

offers clear, technically rigorous “recipes” for securely connecting workloads to the

GitLab REST API. The guide details practical procedures for establishing authentication

via OAuth 2.0 Authorization Code flows, along with recommended practices for

reducing reliance on long-lived secrets and improving auditability.

This guidance is intended to be relevant regardless if your organization uses the Aembit

Workload IAM Platform to secure workload access. The patterns described here apply

equally to teams leveraging GitLab’s native security features, cloud identity providers, or

other secret management frameworks.

Readers will find the following material:

●​ Reference architectures illustrating authentication patterns
suitable for machine workloads accessing GitLab’s REST
API.

●​ Detailed configuration instructions for OAuth 2.0

Authorization Code flow, emphasizing correct
implementation and adaptability to enterprise
requirements.

●​ Considerations for runtime behavior, such as how libraries

and tools interact with injected credentials.

●​ Recommendations for minimizing credential exposure,
including policy enforcement, centralized credential
lifecycle management, and support for short-lived tokens.

●​ Design principles applicable across varied infrastructure

environments, including on-premises, hybrid, and
cloud-native deployments.

3 aembit.io

https://docs.aembit.io/user-guide/access-policies/credential-providers/oauth-authorization-code

This publication is intended for DevOps engineers, platform architects, and security

professionals responsible for maintaining the integrity of workload-to-service

interactions. The objective is to support informed decision-making and consistent

execution in the secure management of workload credentials within the context of

GitLab and related systems.

Future editions of this series will extend similar guidance to additional platforms and

services, reflecting a broader effort to advance the security and efficiency of machine

identity management throughout the enterprise.

Now let’s get back to the kitchen to do some cooking!

4 aembit.io

Prerequisites
Before proceeding with the configuration, you must have a GitLab tenant (or sign up for

one) and a user, group, or instance level owned application. If you have not generated

an application yet, follow the configuration steps below. For detailed information on

how to create a new application, please refer to the official GitLab documentation.

Server Workload Configuration​
1.​ Create a new Server Workload.

●​ Name - Choose a user-friendly name.

2.​ Configure the service endpoint:

●​ Host - gitlab.com

●​ Application Protocol - HTTP

●​ Port - 443 with TLS

●​ Forward to Port - 443 with TLS

●​ Authentication method - HTTP Authentication

●​ Authentication scheme - Bearer

5 aembit.io

https://gitlab.com/users/sign_up
https://docs.gitlab.com/ee/integration/oauth_provider.html

Credential Provider Configuration​
1.​ Sign in to your GitLab account.

2.​ In the upper-left corner of any page, click your profile photo, then click Edit

Profile.

3.​ Navigate to Applications in the left-hand menu.

4.​ On the right side, click on the Add new application button.

5.​ Provide a name for your app.

6.​ Switch to the Aembit UI to create a new Credential Provider, selecting the OAuth

2.0 Authorization Code credential type. After setting up the Credential Provider,
copy the auto-generated Callback URL.

7.​ Return to GitLab and paste the copied URL into the Redirect URI field.

8.​ Check the Confidential box, and select the scopes for your application

depending on your needs.

9.​ After making all of your selections, click on Save application.

6 aembit.io

10.​On the directed page, copy the Application ID, Secret and Scopes, and store
them for later use in the tenant configuration.

11.​Edit the existing Credential Provider created in the previous steps.

●​ Name - Choose a user-friendly name.
●​ Credential Type - OAuth 2.0 Authorization Code
●​ Callback URL (Read-Only) - An auto-generated Callback URL from Aembit

Admin.
●​ Client Id - Provide the Application ID copied from GitLab.
●​ Client Secret - Provide the Secret copied from GitLab.
●​ Scopes - Enter the scopes you use, space-delimited (e.g. read_api

read_user read_repository).
●​ OAuth URL - https://gitlab.com
●​ Click on URL Discovery to populate the Authorization and Token URL fields,

which can be left as populated.
●​ PKCE Required - On
●​ Lifetime - 1 year (GitLab does not specify a refresh token lifetime; this value

is recommended by Aembit.)

12.​Click Save to save your changes on the Credential Provider.

7 aembit.io

https://docs.aembit.io/user-guide/access-policies/credential-providers/oauth-authorization-code
https://gitlab.com

13.​In Aembit UI, click the Authorize button. You are directed to a page where you
can review the access request. Click Authorize to complete the OAuth 2.0
Authorization Code flow. You should see a success page and be redirected to
Aembit automatically. You can also verify your flow is complete by checking the
State value in the Credential Provider. After completion, it should be in a Ready
state.

Caution
Once the set lifetime ends, the retrieved credential will expire and no longer be active.

Aembit will notify you before this happens. Please ensure you reauthorize your credential

before it expires.

8 aembit.io

Client Workload Configuration​
Aembit now handles the required credentials for API access to your GitLab instance,

eliminating the need for you to manage them directly. You can safely remove any

previously used credentials from the Client Workload.

If you access the Server Workload through an SDK or library, it is possible that the

SDK/library may still require credentials to be present for initialization purposes. In this

scenario, you can provide placeholder credentials. Aembit will overwrite these

placeholder credentials with the appropriate ones during the access process.

Access Policy​
Create an Access Policy for a Client Workload to access the GitLab REST API Server

Workload. Assign the newly created Credential Provider to this Access Policy.

Required Features​
You will need to configure the TLS Decrypt feature to work with the GitLab REST API

Server Workload.

9 aembit.io

https://docs.aembit.io/user-guide/deploy-install/advanced-options/tls-decrypt/configure-tls-decrypt

Now That You’ve Completed
the Recipe…

As organizations like yours continue to expand their use of GitLab to automate and

orchestrate software delivery, the question is not whether workloads should

authenticate securely, but how that can be accomplished with consistency, auditability,

and minimal operational friction. The guidance offered here is intended to assist teams

in reducing exposure associated with static credentials and establishing practices that

scale with their environments.

For teams seeking to go further and reach maturity faster, the Aembit Workload IAM

Platform acts as a centralized identity and access provider for your GitLab workloads.

We bridge the gap between your GitLab CI/CD jobs and the dynamic, short-lived

credentials they need to access cloud resources, databases, and SaaS services.

For more information, visit aembit.io.

10 aembit.io

http://aembit.io

	Aembit Server Workload Cookbook: GitLab Edition
	How to Securely Configure Workload Access
	to the GitLab REST API

	
	
	Prerequisites
	Server Workload Configuration​
	
	
	
	
	
	
	Credential Provider Configuration​
	Caution
	Client Workload Configuration​
	Access Policy​
	Required Features​

	
	Now That You’ve Completed
	the Recipe…

